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Homogeneous Bianchi Type VIo Perfect Fluid 
Space-Times 
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An algorithm is presented for generating new exact solutions of the Einstein 
equations for spatially homogeneous cosmological models of Bianchi type VI 0. 
The energy-momentum tensor is of perfect fluid type. Starting from Dunn and 
Tupper's dust-filled universe, new classes of solutions are obtained. The solutions 
represent anisotropic universes filled with perfect fluid not satisfying the equation 
of state. Some of their physical properties are studied. 

1. I N T R O D U C T I O N  

Experimental  studies of  the isotropy of  cosmic microwave radiation 
and speculation about the amount  of  helium formed at early stages of  the 
universe and many other effects have stimulated theoretical interest in 
anisotropic cosmological models. The spatially homogeneous Bianchi 
models I - I X  necessarily admit a three-parameter group which acts simply 
transitively over the three-dimensional constant-time subspace. The impor- 
tance of  Bianchi spaces is due to the simplicity of  the field equations. The 
relative ease of  solution has made these spaces useful in constructing and 
studying models of  spatially homogeneous cosmologies. Homogeneous  
cosmological models filled with matter together with specified equations of  
state have already been widely studied. I confine myself  to the class of  
spatially homogeneous Bianchi type VI0 spaces. The solutions of  the Einstein 
equations in the case of  stiff matter were obtained by Ellis and MacCallum 
(1969). Collins (1971) and Ruban (1978) presented exact solutions of  type 
VI0 with a perfect fluid. A class of  cosmological models with a perfect fluid 
and electromagnetic field was also investigated by Dunn and Tupper  (1976, 
1987) and Tupper  (1977) for the case of  dust. Lorentz (1982) generalized 
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the solution given by Ellis and MacCallum (1969). Roy and Singh (1983) 
derived some exact solutions of Einstein-Maxwell equations representing 
a free gravitational field of the magnetic type with matter and an incident 
magnetic field. Recently, Ribeiro and Sanyal (1987) studied spatially 
homogeneous Bianchi type VI0 models containing a viscous fluid in the 
presence of an axial magnetic field. 

Hajj-Boutros (1984) presented a technique for generating exact solu- 
tions of the Einstein equations with spherical symmetry. He also applied 
the technique to build exact solutions in the ease of hypersurface- 
homogeneous space-times and Bianchi type II spaces (Hajj-Boutros, 1985, 
1986). Following his method, I derive here an algorithm to generate exact 
solutions of the Einstein equations for the Bianchi type VIo class of models 
with energy-momentum tensor of a perfect fluid. Starting from Dunn and 
Tupper's (1976) dust-filled universe, I obtain two new classes of solutions 
which can be added to rare perfect fluid solutions not satisfying the equation 
of state, e.g., solutions obtained by Singh and Singh (1968), Singh and 
Abdussattar (1973, 1974), Patel and Vaidya (1969), and Shri Ram (1988). 
I also study the geometrical and physical properties of the solutions 
obtained. 

2. FIELD EQUATIONS AND GENERATION TECHNIQUES 

The metric for the Bianchi type VIo class of models is taken of the form 

ds 2 = - dt2 + A ( t ) dx2 + B ( t ) e - x dy2 + C ( t ) e ~ dz  2 (1) 

where A, B, and C are cosmic scale functions. The field equations in general 
relativity are 

1 = T ~  (2) R ~  - ~ R g ~  

In the case of the energy-momentum tensor of a perfect fluid 

T ~  = (p + p ) v ~ v ,  + pg~.,, (3) 

where v ~" is the 4-velocity vector, p is the pressure and p is the mass-energy 
density. 

For the metric (1) the field equations to be considered are 

1 pt 1 n ~(B /B)+~(C /C)-I (B' /B)2- �88 = - p  (4) 

~(A"/A) +k(C"/C) -�88188 I(A'C'/AC) - 1/ (4A)  = - p  (5) 

�89 +�89 - I ( A ' / A ) 2 - 1 ( B ' / B ) 2 + � 8 8  - 1/ (4A)  = - p  (6) 
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~(A'B'/AB) +�88188 - I /(4A) = p (7) 

(S ' /B)  - (C' /C')  = 0 (8) 

where a prime denotes differentiation with respect to t. 
From equation (8) we get 

B = nC (9) 

where n is a constant. Without loss of generality we can take n = 1. Elimina- 
tion of p from (4) and (5) gives the condition of isotropy of pressures 

2 ( B " / B - A " / A ) + ( A ' / A ) ( A ' / A - B ' / B ) + 2 / A = O  (10) 

To treat equation (10), I introduce functions R and S defined by 

R = A ' / A ,  S-~B' /B (11) 

Using (11), equation (10) becomes 
/ 2 ~ 1 2 1 S +S - R  -~R - ~ R S + I / A = O  (12) 

which can be regarded a Riccati equation in S (or R). 

Case I. If  (12) is regarded a Riccati equation in S, we linearize it by 
the change of function 

S=So+ I / Z  (13) 

where So is a particular solution of (12) with S being the more general one. 
From equations (12) and (13), we obtain 

Z'+ Z(�89 - 2So) = 1 (14) 

Equation (14) has the general solution 

Z=(Bo/A1/2)[f (AI/2/B2) dt+kl]  (15) 

kl is an integration constant. From (13) and (15) we obtain 

B =  Bo exp{f (B2/A,/2)[ S ( /42 /B~)dt+k ,]+k2}  (16) 

where k2 is another constant of integration. Hence, from the couple [A, Bo], 
this algorithm allows us to obtain [A, B], where B is given by (16) and A 
stays invariable. 

Case 2. When (12) is regarded a Riccati equation in R, it can be 
linearized by the change of function 

R = Ro+ 1 / Y  (17) 
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Using (17) in equation (12), we get 

Y ' +  Y ( - R o - I S ) = � 8 9  (18) 

where Ro is a particular solution of (12) with R being the more general 
one. The general solution of (18) is 

Y=(AoB1/2)[f ( 1 / 2 A o  B1/2) d t + k 3 ] ,  (19) 

k3 is a constant. Equations (17) and (19) yield 

A = Ao exp (AoB1/2)[ I  ( 1 / 2 A o B  1/2) dt  + k3] 

where k4 is an integration constant. Thus, from the metric functions [Ao, B] 
we can generate new functions [A ,  B] ,  where A is given by (20) and B stays 
invariable. 

3. GENERATED SOLUTIONS 

I confine myself to the Bianchi type VIo, spatially homogeneous, 
dust-filled cosmology with metric (Dunn and Tupper, 1976) 

ds 2 = - d t 2  + t 2 dx2 + t( e - x  dyZ + e x dz  2) (21) 

The mass-energy density of this model is 

p = 1/t  2 (22) 

To apply the formula (16), take 

A = t 2, Bo = t (23) 

Inserting the values of A and B into (16), we obtain 

A = t 2, B = t (b  log at)  (24) 

where a and b are arbitrary constants. By change of scale the metric of the 
new solution (24) can be written as 

ds 2 = - d t 2 +  t 2 dx  ~ + ( t  log a t ) (  e -~ dy2 + e ~ dz  2) (25) 

Starting from the metric (25) as a particular solution, the formula (16) 
provides 

A = t 2, B = m t ( b  log at + 1) (26) 

where m and b are arbitrary constants. Thus, the metric of the new class 
of solutions (26) is 

ds 2 = - d t 2  + t 2 dx2 + t (b  log a t +  1)(e -~ dy2 + e x dz 2) (27) 
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Applying the formula (16) for the metric (27) as a particular solution, one 
arrives at (27) again with different parameters. I call (27) the M~ class of 
models. For b = 0 one obtains the Dunn and Tupper (1976) solution (21). 

If one applies the formula (20) for the metric (21) as a particular 
solution, one obtains 

A = (o t t+f l t -U2)  2, B = t (28) 

a, fl are arbitrary constants. The metric of the new class of  solutions reads 

ds 2 = - d r 2 +  ( a t  + fit-l~2) 2 dx2 + t( e -x dyE+ e x dz 2) (29) 

I call this class M2. For a = 1 and/3 -- 0, one arrives at the metric (21). 

4. PHYSICAL PROPERTIES OF SOLUTIONS 

The pressure and energy-density are given by (4) and (7). For the M1 
class of models, we obtain 

p = b 2 / 4 t 2 ( b  log at + 1 )  2 - b / 2 t 2 ( b  log at + 1) (30) 

= 3 b / 2 t 2 ( b l o g a t + l ) + b E / 4 t 2 ( b l o g a t + l ) E + l / t  2 (31) 

The energy-density p is positive for b > 0. The dominant energy conditions 
of Hawking and Ellis (1973), i.e., 

p > 0, p + 3p > 0 (32) 

are identically satisfied. The pressure and energy-density do not satisfy the 
equation of  state of  the form 

p = ( y - 1 ) p ,  1--<y--<2 (33) 

and thus the solutions M1 belong to some rare perfect fluid solutions of 
this type existing in literature. 

Equations (30) and (31) show that the pressure and energy density are 
infinite for t = 0. Also, as t -> 0 the proper volume V = AB2-> O. Thus, t = 0 
represents a pointlike singularity. As t--> oo, p(oo)= p(oo)= 0 and thus this 
class of models gives essentially empty universes for large t. 

I now discuss the kinematic behavior of the class M1. The projection 
tensor 

h~,, = g~,, + v~v,, (34) 

is used for splitting the covariant derivative of  the velocity vector v t" as 
follows: 

1 v~;,, = -b~v, ,  + t%,, + cry,, +~Oh~,, (35) 
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where t~,, 0, t%~, and cr,~ are acceleration, scalar expansion, rotation tensor, 
and shear tensor, respectively. The shear tensor plays an important role in 
general relativistic cosmological and stellar models (Collins and 
Wainwright, 1983). For this class all fluids are acceleration and rotation-free, 
but they do have expansion 0 and shear scalar o- given by 

0 = ( b + 2 + 2 b  log a t ) / t ( b  log at+ 1) (36) 

o- = (1/2v~)(b log at+ 1 - b ) / t ( b  log at+ 1) (37) 

Equation (36) shows that the expansion is (1) infinite for t = 0, (2) nonzero 
for all t (0<  t<oo),  and (3) zero as t ->~.  Thus, M1 represents a class of 
expanding universes. Equation (37) shows that (1) the scalar shear is nonzero 
for all values of t, 0 < t < ~ ,  and thus, the model is anisotropic, (2) at infinite 
time ( t ~  oo) the model is shear-free, and thus, there is no anisotropy. We 
also find that 

tr/0-> 1/4V~ as t-> oo (38) 

which shows that the shear scalar does not tend to zero faster than the 
expansion. 

The distribution of matter and kinematical parameters for the class 
M2 are 

p = 1/4t  2 -1 /4 ( c t t  + f i t - l / 2 )  2 (39) 

p = 1/4t 2 -  1/4(at+flt-a/2)2+(cr - � 89  -1/2) (40) 

0 = 1 / t  + (oL - �89 + fit -1/2) (41) 

o- -- (1/4x/3) (2tzt - 3flt-1/2)/t(at + fig-l/2) (42) 

The dominant energy conditions are satisfied if a > 1 and fl > 0. The other 
kinematical quantities, rotation and acceleration, are zero. The physical 
behavior of the class M2 is similar to the class M1. 

In conclusion, I have presented spatially homogeneous and anisotropic 
cosmological models of Bianchi type VIo filled with perfect fluid. The models 
are expanding and shearing, which give essentially empty universes fo r  
large time. The behavior of the fluid is time dependent and can be physically 
reasonable. 

ACKNOWLEDGMENT 

The author is indebted to Prof. K. P. Singh for valuable suggestions. 



Homogeneous Bianchi Type VI o Space-Times 103 

R E F E R E N C E S  

Collins, C. B. (1971). Communications in Mathematical Physics, 23, 137.- 
Collins, C. B. and Wainwright, J. (1983). Physical Review D, 27, 1209. 
Dunn, K. A., and Tupper, B. O. J. (1976). Astrophysical Journal, 180, 317. 
Dunn, K. A., and Tupper, B. O. J. (1978). Astrophysical Journal, 204, 322. 
Ellis, G. F. R., and MaeCallum, M. A. H. (1969). Communications in Mathematical Physics, 

12, 20. 
Hajj-Boutros, J. (1984). In Gravitation Geometry and Relativity Physics, Springer, Berlin, p. 51. 
Hajj-Boutros, J. (1985). Journal of Mathematical Physics, 26, 2297. 
Hajj-Boutros, J. (1986). Journ~al of Mathematical Physics, 27, 1592. 
Hawking, S. W., and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time, Cambridge 

University Press, Cambridge. 
Lorentz, D. (1982). Astrophysics and Space Science, 85, 69. 
Patel, L. K., and Vaidya, P. C. (1969). Progress of Mathematics, 3, 158. 
Ribeiro, B. M., and Sanyal, A. K. (1987). Journal of Mathematical Physics, 28, 657. 
Roy, S. R., and Singh, J. P. (1983). Acta Physica Austriaca, 5, 57. 
Ruban, V. A. (1978). Preprint no. 412, Leningrad Institute of Nuclear Physics BP Konstan- 

tinova. 
Shri Ram (1988). Journal of Mathematical Physics, 29, 449. 
Singh, K. P., and Abdussattar (1973). Journal of Physics A, 6, 1090. 
Singh, K. P., and Abdussattar (1974). Current Science, 43, 372. 
Singh, K. P., and Singh, D. N. (1968). Monthly Notices of the Royal Astronomical Society, 140, 

453. 
Tupper, B. O. J. (1977). Astrophysical Journal, 216, 192. 


